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In this article we discuss the generalization of a Lagrange multiplier-based ficti-
tious domain method to the simulation of the motion of neutrally buoyant particles
in a Newtonian fluid. Then we apply it to study the migration of neutrally buoyant
circular cylinders in plane Poiseuille flow of a Newtonian fluid by direct numerical
simulation. The Segré–Silberberg effect is found for the cases with one and several
circular cylinders. In general, it is believed that the migration away from the center
of the channel is due to an effect of the curvature of velocity profile. Via direct nu-
merical simulation, we find that this effect is not weakened by the presence of many
particles, but by the collisions among the particles. Experiments and simulations for
hundreds of circular cylinder cases show that particles concentrate in the central re-
gion where the shear rate is low. A power law associated with the horizontal velocity
of the mixture of fluid/particles is also presented. c© 2002 Elsevier Science (USA)

Key Words: particulate flow; solid–liquid flow; neutrally buoyant particle; fictitious
domain method; distributed Lagrange multiplier; operator splitting; finite element;
power law.

1. INTRODUCTION

The problem of particle motions in shear flows is crucially important in many engineering
fields such as the handling of a fluid–solid mixture in slurry, colloid, and fluidized bed. The
experiments of Segré and Silberberg [23, 24] have had a large influence on fluid mechanics
studies of migration and lift of particles. They studied the migration of dilute suspensions
of neutrally buoyant spheres in pipe flow at Reynolds numbers between 2 and 700. The
particles migrate away from the wall and centerline and accumulate at about 0.6 of a pipe
radius from the centerline. Karnis et al. [16] verified the same phenomenon and observed
that particles migrate faster for larger flow rate and closer to the axis for the larger rigid
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sphere. The “anomalous” motion observed is attributed to the nonlinear effect of inertia.
Comprehensive reviews of experimental and theoretical works have been given by Brenner
[4], Cox and Mason [6], Leal [17], and Feuillebois [9].

Direct numerical simulations have been used for understanding particle motion in shear
flows. Feng et al. [8] investigated the motion of neutrally buoyant and nonneutrally buoy-
ant circular particles in plane Couette and Poiseuille flows using a finite element method
and obtained qualitative agreement with the results of perturbation theories and of exper-
iments. Morris and Brady [20] performed numerical studies on the influence of particle
buoyancy in pressure-driven flow of a suspension when inertia is neglected and compared
with experimental results. They found that shear-induced migration in Stokes flows com-
petes with buoyancy effects and concluded that the flow behavior depends strongly on both
the bulk particle volume fraction and the dimensionless gravitational parameter, but only
weakly on the the dimensionless channel width. Huang and Joseph [14] found, via numer-
ical simulation, that at moderate Reynolds numbers in a pressure-driven plane Poiseuille
flow, shear thinning causes neutrally buoyant particles (for the case with 56 circular cylin-
ders) to migrate away from centerline, creating a particle-free zone, which increases the
amount of shearing thinning. In a visco-elastic fluid with shear thinning, particle migrates
toward either the centerline or the walls, creating an annular particle-free zone at inter-
mediate radii. Inamuro et al. [15] used the lattice Boltzmann method to study the mo-
tions of neutrally buoyant circular disks in a pressure-driven plane Poiseuille flow. The
Segré–Silberberg effect was found. They found that the equilibrium position of the par-
ticle is closer to the wall as the Reynolds number increases from about 12 to 96; but it
moves away from the wall as either the diameter of the disk or the length of the channel is
increased.

In this article, we discuss the generalization of a distributed Lagrange multiplier/fictitious
domain method (DLM/FD) for the numerical simulation of particulate flow (see [12, 13])
to the case where the particles are neutrally buoyant. Via the DLM/FD method, we do not
need to compute the hydrodynamical forces explicitly in the simulation since the interaction
between the fluid and the particles is implicitly modeled by the global variational formulation
at the foundation of the methodology employed here. We can also avoid generating boundary
fitted grids for different positions of the particles; indeed one just needs a simple structured
grid and the geometrical relation between the particles and the grid. This DLM/FD method
has been successfully applied, in [12] and [13], to simulate particulate flow in two and three
dimensions with the number of nonneutrally buoyant particles on the order of 103–104

in 2-D and 102–103 in 3-D. We then applied this approach to study, via direct numerical
simulation, the migration of neutrally buoyant particles in a pressure-driven flow of an
incompressible viscous Newtonian fluid. The Segré–Silberberg effect is found for the cases
with few cylinders. In general, it is believed that the migration away from the center of the
channel is due to an effect of the curvature of velocity profile (see [2]). Via direct numerical
simulation, we found that this effect is not weakened by the presence of many particles, but
in fact by the collisions between the particles. Experiments and simulations for hundreds of
circular cylinder cases show that particles concentrate in the central region where the shear
rate is low. A power law associated with the horizontal velocity of mixture of the fluid and
particles is also presented.

The content of this article is as follows: In Section 2 we introduce a fictitious domain
formulation of the model problem associated with the neutrally buoyant particle cases; then
in Section 3 we discuss the time and space discretizations and in Section 4 we present and
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discuss the numerical results of cases with one, several, and several hundreds of neutrally
buoyant particles.

2. A FICTITIOUS DOMAIN FORMULATION OF THE MODEL PROBLEM

Let � ⊂ IR2 be a rectangular region (three-dimensional cases can be treated by a similar
approach). We suppose that � is filled with a Newtonian viscous incompressible fluid (of
density ρ f and viscosity µ f ) and contains a moving neutrally buoyant rigid particle B
centered at G = {G1, G2}t of density ρ f , as shown in Figure 1; the flow is modeled by the
Navier–Stokes equations and the motion of B is described by the Euler–Newton’s equations.
We define

W0,p = {v | v ∈ (H 1(�))2, v = 0 on the top and bottom of � and v is periodic

in the x1 direction},

L2
0 =

{
q | q ∈ L2(�),

∫
�

q dx = 0,

}
,

�0(t) = {
µ |µ ∈ (H 1(B(t)))2, 〈µ, ei〉B(t) = 0, i = 1, 2, 〈µ, Gx

→⊥〉B(t) = 0
}

with e1 = {1, 0}t , e2 = {0, 1}t , Gx
→⊥ = {−(x2 − G2), x1 − G1}t , and 〈·, ·〉B(t) an inner prod-

uct on �0(t), which can be the standard inner product on (H 1(B(t)))2 (see [13], Sect. 5, for
further information on the choice of 〈·, ·〉B(t)). Then the fictitious domain formulation with
distributed Lagrange multipliers for flow around a freely moving neutrally buoyant particle
(see [12, 13] for detailed discussion of nonneutrally buoyant cases) is as follows

For a.e. t > 0, find u(t) ∈ W0,p, p(t) ∈ L2
0, VG(t) ∈ IR2, G(t) ∈ IR2, ω(t) ∈ IR, λ(t) ∈

�0(t) such that

ρ f

∫
�

[
∂u
∂t

+ (u · ∇)u
]

· v dx + 2µ f

∫
�

D(u): D(v) dx −
∫

�

p∇ · v dx − 〈λ, v〉B(t)

= ρ f

∫
�

g · v dx +
∫

�

F · v dx, ∀v ∈ W0,p, (1)∫
�

q∇ · u(t) dx = 0, ∀q ∈ L2(�), (2)

〈µ, u(t)〉B(t) = 0, ∀µ ∈ �0(t), (3)

FIG. 1. An example of a two-dimensional flow region with one rigid body.
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dG
dt

= VG, (4)

VG(0) = V0
G, ω(0) = ω0, G(0) = G0 = {

G0
1, G0

2

}t
, (5)

u(x, 0) = ū0(x) =
{

u0(x), ∀x ∈ �\B(0),

V0
G + ω0

{−(
x2 − G0

2

)
, x1 − G0

1

}t
, ∀x ∈ B(0),

(6)

where u and p denote velocity and pressure, respectively, λ is a Lagrange multiplier,
D(v) = (∇v + ∇vt )/2, g is gravity, F is the pressure gradient pointing in the x1 direction,
VG is the translation velocity of the particle B, and ω is the angular velocity of B. We
suppose that the no-slip condition holds on ∂ B. We also use, if necessary, the notation φ(t)
for the function x → φ(x, t).

Remark 1. The hydrodynamical forces and torque imposed on the rigid body by the
fluid are built in (1)–(6) implicitly (see [12, 13] for details); thus we do not need to compute
them explicitly in the simulation. Since in (1)–(6) the flow field is defined on the entire
domain �, it can be computed with a simple structured grid.

Remark 2. In (3), the rigid body motion in the region occupied by the particle is enforced
via Lagrange multipliers λ. To recover the translation velocity VG(t) and the angular
velocity ω(t), we solve the following equations〈

ei, u(t) − VG(t) − ω(t)Gx
→⊥〉

B(t)
= 0, for i = 1, 2,〈

Gx
→⊥

, u(t) − VG(t) − ω(t)Gx
→⊥〉

B(t) = 0.
(7)

Remark 3. In (1), 2
∫
�

D(u) : D(v) dx can be replaced by
∫
�

∇u : ∇v dx since u is
divergence free and in W0,p. Also the gravity g in (1) can be absorbed into the pressure term.

3. SPACE APPROXIMATION AND TIME DISCRETIZATION

Concerning the space approximation of problems (1)–(6) by a finite element method, we
shall proceed as follows:

We use P1-iso-P2 and P1 finite elements for the velocity field and pressure, respectively
(like in Bristeau et al. [5]). More precisely with h a space discretization step we introduce
a finite element triangulation Th of �̄ and then T2h a triangulation twice coarser (in practice
we should construct T2h first and then Th by joining the midpoints of the edges of T2h ,
dividing thus each triangle of T2h into four similar subtriangles as shown in Fig. 2).

We approximate then W0,p, L2, and L2
0 by the following finite-dimensional spaces

W0,h = {vh | vh ∈ (C0(�̄))2, vh |T ∈ P1 × P1, ∀T ∈ Th, vh = 0 on the top and bottom

of � and v is periodic at Γ in the x1 direction}, (8)

L2
h = {qh | qh ∈ C0(�̄), qh |T ∈ P1, ∀T ∈ T2h, qh is periodic at � in the x1 direction}, (9)

and

L2
0,h =

{
qh | qh ∈ L2

h,

∫
�

qh dx = 0

}
, (10)

respectively; in (8)–(10), P1 is the space of polynomials in two variables of degree ≤1.
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FIG. 2. Subdivision of a triangle of T2h .

A finite-dimensional space approximating �0(t) is defined as follows: Let {xi }N
i=1 be a

set of points covering B(t) (see Fig. 3, for example); we define then

�h(t) =
{
µh | µh =

N∑
i=1

µiδ(x − xi ),µi ∈ IR2, ∀i = 1, . . . , N

}
, (11)

where δ(·) is the Dirac measure at x = 0. Then, instead of the scalar product of (H 1(B(t)))2
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FIG. 3. An example of a set of collocation points chosen for enforcing the rigid body motion inside the disk
and at its boundary.
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we shall use 〈·, ·〉Bh(t) defined by

〈µh, vh〉Bh(t) =
N∑

i=1

µi · vh(xi ), ∀µh ∈ �h(t), vh ∈ W0,h . (12)

Then we approximate �0(t) by

�0,h(t) = {
µh | µh ∈ �h(t), 〈µh, ei 〉Bh(t) = 0, i = 1, 2,

〈
µh, Gx

→⊥〉
Bh(t) = 0

}
. (13)

The inner product 〈·, ·〉Bh(t) in (12) makes little sense for the continuous problem, but it is
meaningful for the discrete problem; it amounts to forcing the rigid body motion of B(t)
via a collocation method. A similar technique has been used to enforce Dirichlet boundary
conditions by Bertrand et al. [3].

Using the above finite-dimensional spaces leads to the following approximation of prob-
lem (1)–(6):

For a.e. t > 0, find u(t) ∈ W0,h, p(t) ∈ L2
0,h, VG(t) ∈ IR2, G(t) ∈ IR2, ω(t) ∈ IR,λh(t) ∈

�0,h(t) such that

ρ f

∫
�

[
∂uh

∂t
+ (uh · ∇)uh

]
· v dx + µ f

∫
�

∇uh : ∇v dx −
∫

�

ph∇ · v dx − 〈λh, v〉Bh(t)

=
∫

�

F · v dx, ∀v ∈ W0,h, (14)

∫
�

q∇ · uh(t) dx = 0, ∀q ∈ L2
h, (15)

〈µ, uh(t)〉Bh(t) = 0, ∀µ ∈ �0,h(t), (16)

dG
dt

= VG, (17)

VG(0) = V0
G, ω(0) = ω0, G(0) = G0 = {

G0
1, G0

2

}t
, (18)

uh(x, 0) = ū0,h(x) (with ∇ · ū0,h = 0). (19)

Applying a first-order operator splitting scheme à la Marchuk–Yanenko [19] (also see
[12, 13]) to discretize Eqs. (14)–(19) in time, we obtain (after dropping some of the sub-
scripts h)

u0 = ū0,h, V0
G, ω0, and G0 are given; (20)

for n ≥ 0, knowing un , Vn
G, ωn and Gn , compute un+1/6 and pn+1/6 via the solution of

ρ f

∫
�

un+1/6 − un

�t
· v dx −

∫
�

pn+1/6∇ · v dx = 0, ∀v ∈ W0,h,∫
�

q∇ · un+1/6 dx = 0, ∀q ∈ L2
h; un+1/6 ∈ W0,h, pn+1/6 ∈ L2

0,h .

(21)
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Then compute un+2/6 via the solution of

∫
�

∂u
∂t

· v dx +
∫

�

(
un+1/6 · ∇

)
u · v dx = 0, ∀v ∈ W0,h, on (tn, tn+1),

(22)
u(tn) = un+1/6; u(t) ∈ W0,h,

un+2/6 = u(tn+1). (23)

Next, compute un+3/6 via the solution of

ρ f

∫
�

un+3/6 − un+2/6

�t
· v dx + αµ f

∫
�

∇un+3/6 · ∇v dx = 0, ∀v ∈ W0,h; un+3/6 ∈ W0,h .

(24)

Now predict the position and the translation velocity of the center of mass of the particles
as follows:

Take V
n+ 4

6 ,0
G = Vn

G and Gn+ 4
6 ,0 = Gn; then predict the new position of the particle via

the following subcycling and predicting–correcting technique:

For k = 1, . . . , N , compute

V̂
n+ 4

6 ,k
G = V

n+ 4
6 ,k−1

G + Fr
(
Gn+ 4

6 ,k−1
)�t/2N , (25)

Ĝn+ 4
6 ,k = Gn+ 4

6 ,k−1 +
(

V̂
n+ 4

6 ,k
G + V

n+ 4
6 ,k−1

G

)
�t/4N , (26)

V
n+ 4

6 ,k
G = V

n+ 4
6 ,k−1

G + (
Fr

(
Ĝn+ 4

6 ,k
) + Fr

(
Gn+ 4

6 ,k−1
))�t/4N , (27)

Gn+ 4
6 ,k = Gn+ 4

6 ,k−1 +
(

V
n+ 4

6 ,k
G + V

n+ 4
6 ,k−1

G

)
�t/4N , (28)

enddo;
and let V

n+ 4
6

G = V
n+ 4

6 ,N
G , Gn+ 4

6 = Gn+ 4
6 ,N . (29)

Now, compute un+5/6, λn+5/6, Vn+5/6
G , and ωn+5/6 via the solution of

ρ f

∫
�

un+5/6 − un+3/6

�t
· v dx + βµ f

∫
�

∇un+5/6 · ∇v dx = 〈λ, v〉Bn+4/6
h

, ∀v ∈ W0,h,

(30)〈
µ, un+5/6

〉
Bn+4/6

h
= 0, ∀µ ∈ �

n+4/6
0,h ; un+5/6 ∈ W0,h, λn+5/6 ∈ �

n+4/6
0,h ,

and solve for Vn+5/6
G and ωn+5/6 from

〈
ei , un+5/6 − Vn+5/6

G − ωn+5/6
−−−−→
Gn+4/6x

⊥〉
Bn+4/6

h
= 0, for i = 1, 2,

(31)〈−−−−→
Gn+4/6x

⊥
, un+5/6 − Vn+5/6

G − ωn+5/6
−−−−→
Gn+4/6x

⊥〉
Bn+4/6

h
= 0,

Finally, take Vn+1,0
G = Vn+5/6

G and Gn+1,0 = Gn+4/6; then predict the final position and
translation velocity as follows:
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For k = 1, . . . , N , compute (32)

V̂n+1,k
G = Vn+1,k−1

G + Fr(Gn+1,k−1)�t/2N , (33)

Ĝn+1,k = Gn+1,k−1 + (
V̂n+1,k

G + Vn+1,k−1
G

)�t/4N , (34)

Vn+1,k
G = Vn+1,k−1

G + (Fr(Ĝn+1,k) + Fr(Gn+1,k−1))�t/4N , (35)

Gn+1,k = Gn+1,k−1 + (
Vn+1,k

G + Vn+1,k−1
G

)�t/4N ,

enddo;

and let Vn+1
G = Vn+1,N

G , Gn+1 = Gn+1,N ; and set un+1 = un+5/6, ωn+1 = ωn+5/6.
In above algorithm (20)–(35), we have tn+s = (n + s)�t , �n+s

0,h = �0,h(tn+s), Bn+s
h is

the region occupied by the particle centered at Gn+s , and Fr is a short-range repulsion
force which prevents the particle/particle and particle/wall penetration (see, e.g., [12, 13]).
Finally, α and β verify α + β = 1; we have chosen α = 1 and β = 0 in the numerical
simulations discussed later.

3.1. Solutions of the Subproblems (21), (22), (24), and (30)

The degenerated quasi-Stokes problem (21) is solved by a preconditioned conjugate
gradient method introduced in [11], in which discrete elliptic problems from the precondi-
tioning are solved by a matrix-free fast solver from FISHPAK by Adams et al. in [1]. The
advection problem (22) for the velocity field is solved by a wave-like equation method as
in [7, 22]. Problem (24) is a classical discrete elliptic problem which can be solved by the
same matrix-free fast solver.

To enforce the rigid body motion inside the region occupied by the particles, we have
to modify the conjugate gradient method discussed in [12] since at each iteration we have
to project the distributed Lagrange multiplier back to the finite-dimensional subspace of
�0(t). The saddle point problem (30) is a particular case of

α

∫
�

u · v dx + µ

∫
�

∇u : ∇v dx =
∫

�

f · v dx + 〈λ, v〉Bs
h
, ∀v ∈ W0,h,

(36)
〈µ, u〉Bs

h
= 0, ∀µ ∈ �s

0,h; u ∈ W0,h, λ ∈ �s
0,h .

The modified conjugate gradient method for the solution of (36) reads as follows:

λ0 ∈ �s
0,h is given, (37)

solve

α

∫
�

u0 · v dx + µ

∫
�

∇u0 : ∇v dx =
∫

�

f · v dx + 〈λ0, v〉Bs
h
, ∀v ∈ W0,h; u0 ∈ W0,h;

(38)

then solve

〈µ, g0〉Bs
h
= 〈µ, u0〉Bs

h
, ∀µ ∈ �s

0,h, (39)

and set

w0 = g0. (40)
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For m ≥ 0, assuming that λm, um , wm , gm are known, compute λm+1
h , um+1, wm+1, gm+1

as follows:
Solve

α

∫
�

ūm · v dx + µ

∫
�

∇ūm : ∇v dx = 〈wm, v〉Bs
h
, ∀v ∈ W0,h; ūm ∈ W0,h, (41)

and set

〈µ, ḡm〉Bs
h
= 〈µ, ūm〉Bs

h
, ∀µ ∈ �s

0,h . (42)

Then compute

ρm = 〈gm, gm〉Bs
h
/〈wm, ūm〉Bs

h
, (43)

and set

λm+1 = λm − ρmwm, (44)

um+1 = um − ρm ūm, (45)

gm+1 = gm − ρm ḡm . (46)

If 〈gm+1, gm+1〉Bs
h
/〈g0, g0〉Bs

h
≤ ε, then take u = um+1. If not, compute

γm = 〈gm+1, gm+1〉Bs
h
/〈gm, gm〉Bs

h
, (47)

and set

wm+1 = gm+1 + γmwm . (48)

Do m = m + 1 and go back to (41).

Remark 4. In (39) and (42), we compute

〈µ, g〉Bs
h
= 〈µ, u〉Bs

h
, ∀µ ∈ �s

0,h (49)

as follows: Find first g̃ ∈ �s
h so that

〈µ, g̃〉Bs
h
= 〈µ, u〉Bs

h
, ∀µ ∈ �s

h (50)

and then project g̃ into �s
0,h by finding c0, c1, and c2 so that

g = g̃ − c1e1 − c2e2 − c0Gx
→⊥

, (51)

satisfies

〈g, ei 〉Bs
h
= 0, for i = 1, 2, 〈g, Gx

→⊥〉Bs
h
= 0. (52)
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4. NUMERICAL EXPERIMENTS AND DISCUSSION

4.1. One and Several Circular Cylinder Cases

In the first test case, we consider the simulation of the motion of a neutrally buoyant
particle in a pressure-driven Poiseuille flow. This case was considered by Inamuro et al.
in [15]; their results were obtained via a lattice Boltzmann method. Here we have used
the same sets of parameters (except time step) to validate our method. The computational
domain is � = (0, 1) × (0, 1), implying that the height D of the channel is 1. The flow
velocity is periodic in the x1 (horizontal) direction and zero at the top and bottom of the
domain. A pressure drop is given (see Table I) for each case so that the flow moves from
the left to the right. The initial flow velocity and particle velocities are at rest. The initial x2

coordinate of the center of the circular cylinder is 0.4. The densities of the fluid and of the
particles are 1 and the viscosity µ f of the fluid varies (see Table I). The particle diameter
is 0.25. We have used structured triangular meshes in all simulations. Here the mesh size
for the velocity field is hv = 1/200. The mesh size for the pressure is h p = 2hv . The time
step is chosen to be �t = 0.002.

In Table I the space-averaged inlet velocity ū, the equilibrium position of the circular
cylinder, and the angular velocity are at most 1.16%, 0.6%, and 2.1%, respectively, from
the values in [15]. (The averaged value ū∗ in [15] was preferable due to the errors in
their computation proportional to (ū∗)2.) Figure 4 shows the lateral migration curves of
the circular cylinder from the same initial position at different Reynolds numbers, namely
Re = 12.78, 27.73, and 96.74 (Re = Dū/µ f ). In the sixth case, the equilibrium position of
the circular cylinder is slightly closer to the center axis of the channel than in the fifth case.
We believe it is possible due to the higher flow rate; actually similar results also occurred in
the experiments shown in [21], in which the ball is closer to the center of the tube at higher
flow rate.

In the second case, we consider the simulation of the motions of eight neutrally buoyant
circular cylinders in a pressure-driven Poiseuille flow, which are lined up along a vertical
line initially (see Fig. 5). The computational domain is � = (0, 42) × (0, 12), implying
that the height D of the channel is 12. The initial flow velocity and particle velocities
are zeros. The pressure drop is dp = 25/18 so that the maximum horizontal speed is 25

TABLE I

Parameters for Each Computation (in Columns 1 and 2) and Comparisons (in Columns 3–8)

between the Computed Results and the Ones in [15]

µ f �p ū∗ ū xc
2
∗ xc

2 ω∗ ω

3.2498036 × 10−3 1.763 × 10−3 0.04137 0.04155 0.2745 0.2732 −0.054675 −0.05345
1.5000000 × 10−3 8.167 × 10−4 0.04131 0.04159 0.2733 0.2725 −0.054694 −0.05343
9.4984908 × 10−4 5.133 × 10−4 0.04091 0.04122 0.2728 0.2723 −0.053772 −0.05264
7.5000000 × 10−4 4.100 × 10−4 0.04118 0.04166 0.2723 0.2720 −0.053765 −0.05283
6.0000000 × 10−4 3.270 × 10−4 0.04110 0.04148 0.2716 0.2719 −0.053101 −0.05206
4.2834760 × 10−4 2.337 × 10−4 0.04101 0.04144 0.2706 0.2722 −0.051607 −0.05052

Notes. µ f is the viscosity of the fluid, �p is the pressure drop, ū is the space-averaged velocity at the inlet
(x1 = 0) after the circular disk reaches the equilibrium position, xc

2 is the equilibrium position, ω is the angular
speed after the circular disk reaches the equilibrium position, and those with ∗ are obtained from [15].
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FIG. 4. Lateral migrations of a circular cylinder at different Reynolds numbers.

when there is no particle (hence µ f is 1). The densities of the fluid and of the particles are
1. The particle diameter d is 0.9. The mesh size for the velocity field is hv = 1/10. The
mesh size for the pressure is h p = 2hv . The time step is �t = 0.001. At t = 200, the space-
averaged velocity ū is 16.33 and the averaged particle speed ū p is 18.12. Hence the Reynolds
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FIG. 5. Lateral migration curves of eight circular cylinders from different initial positions.
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FIG. 6. The eight particle positions at t = 5, 7.5, 20, 40, and 200 (from top to bottom).

number Re = ū D/µ f is 195.96 and the averaged particle Reynolds number Re = ū pd/µ f

is 16.308. The lateral migration curves of eight circular cylinders with respect to time
from the different initial positions simultaneously are shown in Fig. 5. Figure 6 shows that
particles interact among themselves before they reach the equilibrium positions.

In the third case, we simulate the motions of 56 neutrally buoyant circular cylinders in a
pressure-driven Poiseuille flow, which was considered in [14]. The computational domain
is � = (0, 21) × (0, 10). The initial flow velocity and particle velocities are zeros. The
pressure drop is dp = 2 and µ f is 1 so that the maximum horizontal speed is 25 when there
is no particle. The densities of the fluid and of the particles are 1. The particle diameter
d is 1. The mesh size for the velocity field is hv = 1/8. The mesh size for the pressure is
h p = 2hv . The time step is �t = 0.001. At t = 40, the maximum particle velocity is 14.76
near the centerline and the maximum fluid velocity without particles is 25 so the maximum
slip velocity is 10.24 near the centerline. In [14] at t = 39.75 the maximum particle velocity
is 15 near the centerline and the maximum slip velocity is 10. The agreement of the results
obtained by two different methods is very good. The velocity profile of the fluid without
particles and the velocities of the particles at t = 30 and 40 are shown in Fig. 7.
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FIG. 7. The velocity profile of the fluid without particles and the velocities of 56 particles at t = 30 (left) and
40 (right).

4.2. Many Circular Disk Cases

We consider the simulation of the motion of hundreds of neutrally buoyant particles in a
pressure-driven Poiseuille flow. The computational domain is � = (0, 42) × (0, 12). The
flow velocity is periodic in the horizontal direction and zero at the top and bottom of the
domain. A fixed horizontal force is given for all cases so that the flow moves from the left
to the right (and the maximum horizontal speed is 25 when there is no particle).
The initial flow velocity and particle velocities are at rest. The densities of the fluid and
the particles are 1 and the viscosity of the fluid is 1. In the first two cases there are 240
and 300 neutrally buoyant particles of diameter 0.9, respectively. In the third case, there
are 1200 neutrally buoyant particles of diameter 0.45. The initial position of the particles
is arranged like a rectangular lattice shown in Fig. 8. We have used structured triangular
meshes in all simulations. The mesh size for the velocity field is hv = 1/10 for the first two
cases and hv = 1/20 for the third case. The mesh size for pressure is h p = 2hv . The time
step is �t = 0.001.

In the case of 240 particles we observed that particles move away from the center in
Fig. 8 at the beginning and at t = 40 the symmetry breaking have already occurred since
not only the angles of the particles in the second and the seventh rows are quite different,
but also the relative position of the particles are not symmetric. One of the possible reasons
is that the mesh is not symmetric with respect to the central line of the channel. The central
horizontal gap size at t = 60 is 1.514 times the one at t = 0. Then the basic two particle
interaction (see Fortes et al. [10]), drafting, kissing, and tumbling, occurred around t = 63
and the pattern of the stable horizontal lines of particles was destroyed. The 240 particle
positions at t = 150, 300, and 320 are shown in Fig. 9. The distribution of the average solid
fraction from t = 300 to 320 is shown in Fig. 10. The solid fraction for the 240 particle
case is 30.29%. The maximum horizontal speed of the particles is about 13.14, 13.09, and
12.09 at t = 60, 65, and 320, respectively.

Similar results are also obtained in the case of 300 particles. The central horizontal gap
size at t = 70 is 1.76 times the initial size (see Fig. 11). The distribution of the average solid
fraction from t = 680 to 700 is shown in Fig. 12. The solid fraction for this 300 particle
case is 37.86%. The maximum horizontal speed of the particles is about 10.17 and 10.04 at
t = 70 and 700, respectively.
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FIG. 8.The 240 particle positions att�0, 40, 60, 63, 65, and 76 (from top to bottom).In the case of 1200 smaller neutrally buoyant particles, the central horizontal gap size
a t t � 1 0 0 i s 1 . 2 7 t i m e s t h e i n i t i a l s i z e . T h e p o s i t i o n s a t t � 1 0 0 , 3 2 0 , a n d 4 0 0 a r e s h o w ni n F i g . 1 3 . T h e d i s t r i b u t i o n o f t h e a v e r a g e s o l i d f r a c t i o n f r o m t � 3 9 0 t o 4 0 0 i s s h o w n i sF i g . 1 4 . T h e s o l i d f r a c t i o n f o r t h e 1 2 0 0 p a r t i c l e c a s e i s 3 7 . 8 7 % . T h e m a x i m u m h o r i z o n t a ls p e e d o f t h e p a r t i c l e s i s a b o u t 1 2 . 8 8 a n d 1 2 . 6 4 a t t � 1 0 0 a n d 4 0 0 , r e s p e c t i v e l y .F i g u r e s 1 0 , 1 2 , a n d 1 4 s h o w t h a t t h e p a r t i c l e s c o n c e n t r a t e i n t h e c e n t r a l r e g i o n o f t h e l o w

s h e a r r a t e g i v i n g n o n u n i f o r m p a r t i c l e c o n c e n t r a t i o n s a n d t h e d i s t r i b u t i o n s o f t h e h o r i z o n t a l
s p e e d s a r e a l i t t l e b i t ß a t a r o u n d t h e c e n t e r o f t h e c h a n n e l . T h e m i g r a t i o n a w a y f r o m t h ec e n t e r i s g e n e r a l l y b e l i e v e d t o b e a n e f f e c t o f t h e c u r v a t u r e o f t h e v e l o c i t y p r o Þ l e ( s e e[ 2 ] ) . W e f o u n d t h a t t h i s e f f e c t i s n o t d i m i n i s h e d b y t h e p r e s e n c e o f m o r e p a r t i c l e s , a t l e a s t
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FIG. 9. The 240 particle positions at t =150, 300, and 320 (from top to bottom).when we increased the solid fraction from 30.29 to 37886% in the above test cases. We

stillobtainedlargergapsatthecenterofthechannelbeforethecollisionsoccurred.After

the collisions among particles occurred, we observed that the above effect diminished and

neutrally buoyant particles migrated toward the central region of lower shear rate. This

result agreed well with the theory proposed by Leighton and Acrivos in [18].

413.Power Laws

Here we consider a fluid/particle mixture behaving like afluid in a channel of heightHand satisfying the following steady-state generalization of a Newtonian Poiseuilleflow

051 01 52 02 5024681 01 2Horizontal Velocity Profile (cm/sec)Y  ( c m )

00 . 10 . 20 . 30 . 40 . 50 . 60 . 70 . 80 . 91

024681 01 2A v e r a g e  S o l i d  F r a c t i o n YFIG. 10.The distribution of the horizontal velocity of 240 particles at t = 320 (the dashed– dotted curve for
the case without particles) (left) and the average solid fraction fromt = 300 to 320 (right).
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FIG. 132 The 1200 particle positions at t = 100, 320, and 400 (from top to bottom)2

From (54), the fl ow rate across the channel is

Q = 2
∫

H/ 2

0

u( y) d y = 2 s

s+ 1

(
d p

µ

e

)

1/ s

(
H

2

)

( 2 s+1)/ s

(

1 − s

2 s + 1

)

(55)

and the maximal speed atH/ 2 i s

U

m a x

= s

s + 1

(
d p

µ

e

)

1/ s

(
H

2

)

( s+1)/ s

. (56)
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1012Average Solid FractionYFIG. 14. The distribution of the horizontal velocity of 1200 particles at t = 400 (the dashed–dotted curve for

the case without particles) (left) and the average solid fraction fromt = 390 to 400 (right).
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FIG. 15. Velocity profile of the flow without particles (dashed–dotted line), averaged horizontal velocity of
flow (solid line), and the profile of the power law solution (dashed line) for the case of 240 neutrally buoyant
particles at t = 320 with dp = 1.38̄, Q = 101.85, Umax = 11.967, s = 0.695, and µe = 2.77677.

Here we solve an inverse problem. Once we know the flow rate Q and the maximal speed
Umax from the simulations, we obtain the exponent from

s = (Q − HUmax)/(HUmax − 2Q) (57)

and the effective viscosity by

µe = dp

/(
(s + 1) Umax

s(H/2)(s+1)/s

)s

. (58)

To get Q, we first computed the flow rate along each vertical mesh line in the computational
domain and then averaged them to get the averaged flow rate for Q even though the flow rate
along each vertical line varies less than one tenth of a percent of the averaged value. To get
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FIG. 16. Velocity profile of the flow without particles (dashed–dotted line), averaged horizontal velocity of
flow (solid line), and the profile of the power law solution (dashed line) for the case of 300 neutrally buoyant
particles at t = 700, dp = 1.38̄, Q = 84.67, Umax = 9.907, s = 0.678, and µe = 3.20888.
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FIG. 17. Velocity profile of the flow without particles (dashed–dotted line), averaged horizontal velocity of
flow (solid line), and the profile of the power law solution (dashed line) for the case of 1200 neutrally buoyant
particles at t = 400, dp = 1.38̄, Q = 104.47, Umax = 12.575, s = 0.799, and µe = 2.41081.

Umax, we computed the averaged horizontal velocity along each horizontal mesh line in the
computational domain and then found the maximum among them. With the calculated Q
and Umax, we got the exponent s by (57) and the effective viscosity by (58). In Figs. 15–17
we have shown the exponents and the effective viscosities associated with the simulations
presented in the previous section. In Fig. 16, the curve of averaged horizontal velocity is
slightly off the curve of power law solution due to a layer of circular cylinders next to each
wall. But in Fig. 17 for the case with 1200 smaller circular cylinders, they match remarkably
well.
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